Analysis the status of automation and in telligence intextile testing industry

YAN Xinyue, YI Hong, CAO Yuechan

CHINA FIBER INSPECTION ›› 2024, Vol. 590 ›› Issue (11) : 24-27.

CHINA FIBER INSPECTION ›› 2024, Vol. 590 ›› Issue (11) : 24-27. DOI: 10.14162/j.cnki.11-4772/t.2024.11.002
Special · Commentary

Analysis the status of automation and in telligence intextile testing industry

Author information +
History +

Abstract

In recent years, with the rapid development of technology, automation and intelligent technology have gradually been applied in the textile inspection industry, greatly improving the efficiency and accuracy of inspection. This article elaborates on the current development of automation and intelligence in four categories of textile inspection: appearance inspection, physical performance inspection, chemical performance inspection, and functional inspection, and uses examples to analyze successful applications of automation and intelligent technology. Summarizing the intelligent and automated development in the field of textile inspection provides guidance for the high-quality development of the textile inspection industry.

Cite this article

Download Citations
晏新月 易宏 曹月婵 Analysis the status of automation and in telligence intextile testing industry[J]. CHINA FIBER INSPECTION, 2024, 590(11): 24-27 https://doi.org/10.14162/j.cnki.11-4772/t.2024.11.002

References

[1] 任志博,蒋金萍.浅谈纺织品检测行业智能化发展现状[J].中国纤检,2024,(02): 38-40.
[2] 梁金祥.织物疵点检测与自动化等级评定系统研究[D].苏州:苏州大学, 2012.
[3] 李文羽,程隆棣.基于机器视觉和图像处理的织物疵点检测研究新进展[J].纺织学报,2014,35(03):158-164.
[4] Di L, Deng S, Liang J, et al. Context receptive field and adaptive feature fusion for fabric defect detection[J]. Soft Computing, 2023,27(18): 13421-13434.
[5] 刘威,徐莉.基于图像处理的无图案纺织品瑕疵检测方法[J].纺织报告.2022,41(11): 22-24.
[6] Chen M, Yu L, Zhi C, et al. Improved faster R-CNN for fabric defect detection based on gabor filter with genetic algorithm optimization[J].Computers in Industry, 2022,134: 103551.
[7]周石.基于深度学习的改进YOLOv5s织物疵点检测方法研究[D].武汉:武汉纺织大学, 2023.
[8]秦晓,陈春侠,黄素平. 一种机织物经纬密度快速检测仪[J]. 轻纺工业与技术.2020,49(09): 4-5.
[9] 彭然.基于计算机视觉的简单组织织物密度检测研究[D]. 武汉:武汉纺织大学, 2022.
[10] Yang C-S, Lin C-J, Chen W-J J E. Using deep principal components analysis-based neural networks for fabric pilling classification[J]. Electronics,2019,8(5): 474.
[11] Liu L, Deng N, Xin B, et al. Objective evaluation of fabric pilling based on multi-view stereo vision[J].The Journal of The Textile Institute, 2021,112(12): 1986-1997.
[12] Jasińska I J A S. The algorithms of image processing and analysis in the textile fabrics abrasion assessment[J]. Applied Science, 2019,9(18): 3791.
[13] Mesdan推出新一代mesdan lab拉伸强度测试系列产品[J].纺织导报,2022,(03):10.
[14] 管昳昳,刘晓霞,王泽凡.自制耐磨仪及其对羽绒面料折皱点的耐磨性测试[J].河北科技大学学报,2017,38(01): 66-72.
[15] Ahirwar M, Behera B J T J o T T I. Prediction of tear strength of bed sheet fabric using machine learning based artificial neural network[J].The Journal of The Textile Institute, 2024,115(1): 22-28.
[16] 夏增勇,李胜昌,谷小辉.自动化分液设备在纺织品纤维含量分析中的应用探讨[J].中国纤检,2021,(09): 76-79.
[17] 杜四海,李小红,夏增勇.纤维成分含量分析中溶样洗样一体自动化设备的研究[J].中国纤检,2023,(03): 75-77.
[18] 文杰清. 纺织品中余氯、甲醛、pH的快速检测方法研究与应用[J]. 纺织报告. 2020,39(09): 13-15.
[19] 易宏, 赵丽, 曹月婵. 智能识别在棉和莱赛尔定量测试中的研究和应用[J].中国纤检, 2023,(04): 82-84.
[20] 王兆芳, 张辉, 丁波. 文胸罩杯透湿率测定新方法[J]. 纺织学报, 2024,45(01): 176-184.
[21] 袁玉兵, 俞大良, 龚有彤. 菌落自动计数仪在纺织品抗菌检测中的应用[J]. 中国纤检, 2023,(07): 66-68.
[22] 杨光豪, 刘美霞, 徐京云. 基于织物透光图像分析评价防钻绒性的方法[J].毛纺科技, 2020,48(05): 77-81.

89

Accesses

0

Citation

Detail

Sections
Recommended

/